
1

HOT-T-CS 2015 – Project Description

Fingerprint based localization of mobile devices

This exercise could be done in groups of 2/3students.

The goal of this exercise is to implement a simple fingerprint-based localization technique based

on real data the student (preferably) collects. The exercise has three parts.

Part 1 - Data Collection

Choose a mobile device that has an independent means of localization so that we know the

ground truth location. Knowing the ground truth location is important as this helps us determine

the location error in the fingerprinting technique. A smartphone with a GPS will work well. If you

use a laptop you will need to connect it to an external GPS.

1. Find a mechanism to record the i) GPS location and ii) signal strengths of WiFi APs in

the vicinity. Basically, record <latitude,longitude, AP1, RSS1, AP2, RSS2, …>. Here,

RSS stands for received signal strength. This represents one data point in the fingerprint

database. You can program your device to do this.

2. Generally speaking, you will need to know the APIs i) to get location and ii) perform WiFi

scans and then record the results. There are many freeware programs that do this

already for various applications. So you do not really need to write your program. For

example, check Wigle. If you are using an Android device, we can give you a simple

program that a graduate student has developed. You can use this directly. See Appendix

1. [I am told that this sort of scan is hard to do on iOS and no app is available. But I did

not verify this.]

3. Consider an outdoor area at least a few hundred meters across. Larger area is fine and

would provide you with more realistic experience.1 Record N fingerprints roughly well

distributed in this area. Larger N will help you in later analysis. One easy way to do this

is simply walk, bike or drive (slowly) around this area while your app is recording

fingerprints. With the right app, you can collect thousands of points very quickly.

4. If you really do not have the right device or cannot get a right app to work, we will give

you data that others have collected. See Appendix 2. But it is best to make a good

attempt to collect your own data. You will learn something just by attempting to do this.

Part 2 - Initial Data Processing

1. You now have N data points of the format <latitude,longitude, AP1, RSS1, AP2, RSS2,

…>. Note that not all points have all APs. In other words, if there are a total of M APs

that are ever seen, each point likely records a small subset of these M APs. This is

simply because not APs could be heard everywhere.

2. Imputation step: Here we supply this missing data. For each data point, populate all

missing APs for that data point with a signal strength below noise floor (e.g., -120 dBm).

1
 Indoor works well also. In fact, indoor loca

https://wigle.net/

2

Thus, after this step, all data points have a record for all APs. For example, suppose we

have seen a total of 3 APs. A data point that looks like

<lat,long,AP1,-62dBm,AP3,-58dBm>

will become

<lat,long,AP1,-62dBm,AP2,-120dBm,AP3,-58dBm>

after this imputation step.

3. We now have a fingerprint database of the following form. The example assumes a total

of 3 data points and 5 APs.

Latitude Longitude AP1 AP2 AP3 AP4 AP5

lat1 long1 -58 -72 -48 -120 -120

lat2 long2 -35 -60 -120 -78 -91

lat3 long3 -89 -120 -120 -120 -78

4. Set aside a part of the data for testing purposes. The best way to do this is to pick a

small fraction (e.g., 10%) of data randomly and set them aside for testing. The idea is to

use these data as test cases to localize and then use the already known <lat,long>

location to determine the error. For example, assume that we are using the 3rd data

point above as test data. Then we will use the signal strengths from the 5 APs as below

to determine its location.

-89 -120 -120 -120 -78

Assume that the location is estimated as <est_lat3, est_long3>. The physical distance

between the estimated location <est_lat3, est_long3> and the actual location <lat3,

long3> is the error.

The remaining data are called training data (i.e., the remaining 90% if you set aside 10%

of testing).

Part 3: Localization

5. Estimate the location of each of the test cases that are set aside in the step before. The

location estimation uses a technique called k-nearest neighbor. The idea is to first

determine k closest „neighbors’ to this test point in the training data set. The idea of

neighborhood here is not in terms of physical distance (we are acting as if we do not

even know the location of the test point anyway), but in signal space.

6. To do this, assume that an M-dimensional coordinate system has been formed using the

signal strength values from M APs. We determine Euclidean distances in this coordinate

system to determine who the k closest neighbors are. As an example, assume again that

the 3rd data point is a test point in the above example. We can determine the distance of

this point from the 2nd point (e.g.) as the distance of

-89 -120 -120 -120 -78

https://docs.python.org/2/library/random.html
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://en.wikipedia.org/wiki/Euclidean_distance

3

 from

-35 -60 -120 -78 -91

 This is determined as

 √

7. In general, the distance in signal space between two data points A and B with signal

strengths from M APs as

and

is given by

8. Revisit step 5. For each test point, determine its distance in signal space from each of

the training points. Thus, determine the nearest k training points (i.e., the top k points

providing the smallest distance from this test point). The assumption is that these k

points should also be the closest in physical space to the test point being considered. k

should be small. A value of 3 to 5 should work well.

9. Use the average of <lat,long> of these k training points as the estimated location of the

test point being considered. Call this the estimated location <est_lat, est_long> for the

test point. Note that we know the actual location <lat,long> of the test point already from

the measurements.

10. Compute distance between <est_lat, est_long> and <lat,long>. This provides the

localization error. This distance is physical distance over the earth‟s surface. You need

to look up how to compute the physical distance between two <lat,long> points. This is

actually not straightforward. But good news is that the code is widely available. So, your

burden is small.

11. So, finally we get the error for each of the test points. Compute the median, 67 percentile

and 90 percentile errors. These numbers are your results.

12. Provide a short report on your methodology and present the above 3 numbers as

results.

Appendix 1

You can install and run this program on your Android phone. It creates a data file (text format) in

/sdcard/CellularMeasurements directory. It logs location <lat,long> as well as cellular

and WiFi signal strengths that the phone hears. Ignore the cellular part. One sample data record

is below. You will need yank out only the red portions using some sort of script. This shows the

http://en.wikipedia.org/wiki/Euclidean_distance
http://andrew.hedges.name/experiments/haversine/
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Percentile
https://drive.google.com/open?id=0B5_bVEzxY25TY05yYXVUYjMzOTFaUWtsdU9VTUYzenlkTGNn&authuser=0

4

<lat,long> location and list of WiFi AP MAC addresses and with the RSS in dBm. This is the

only information that is relevant for your work. If you move around with this program running, the

phone will continuously log data.

2315_46_30

[52282,174397530,336]
Loc: 40.90655632 -73.10848849 2315_46_30

GSM RSSI: -103

HSPA Neighboring Cell 88 -112

HSPA Neighboring Cell 336 -105

HSPA Neighboring Cell 88 -109
WiFi: 18:64:72:1d:84:d2 WolfieNet-Secure -80 5240

WiFi: 18:64:72:20:fd:12 WolfieNet-Secure -85 5765

WiFi: 18:64:72:35:df:12 WolfieNet-Secure -85 5805

WiFi: 18:64:72:35:e2:72 WolfieNet-Secure -86 5745

Note since this program is not in the app store, you may need to provide appropriate

permissions to install/run this program on your device. This program has been extensively used

in Nexus 4 and 5 phones. If you experience bugs in other platforms please let me know.

You may also need a file browser application to inspect or to move the data. If you are not

already familiar with one, try “ES File Explorer” -- a free app available in the play store.

Appendix 2

For those of you unable or unwilling to collect their own data, a cleaned up data set is made

available. The data is already separated in training and test for your ease of use. The data

format is csv, with each line is a single data point. The format is <lat, long, AP1, RSS1, AP2,

RSS2, …> This data was collected in the Chapin apartment area on east campus.

https://drive.google.com/open?id=0B5_bVEzxY25TakJWaXEtTGtKcE5ZbzQ5cFFIVXA4dnNZTm5Z&authuser=0
https://drive.google.com/open?id=0B5_bVEzxY25Ta2FvSVJ3WGQ5VldEZ3RJR0hTUmZGRk1NalZn&authuser=0

